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Realistic engineering simulation data often have features that are not optimally resolved

due to practical limitations on mesh resolution. To be useful to application engineers,

vortex characterization techniques must be sufficiently robust to handle realistic data with

complex vortex topologies. In this paper, we present enhancements to the vortex topology

identification component of an existing vortex characterization algorithm. The modified

techniques are demonstrated by application to three realistic data sets that illustrate the

strengths and weaknesses of our approach.

I. Introduction

As computing power continues to increase, large-scale computational fluid dynamics (CFD) simulations
of complex vortical flows about realistic configurations are becoming routine. Visualization of the simulation
results is often used to gain insights into the underlying physical phenomena. Feature-based techniques
have been demonstrated to provide viable methods for visualizing large-scale simulations of this type.1–5

These methods extract features (in this case vortices) and define them in terms of high-level, feature-based
descriptors. This process is sometimes termed feature (vortex) characterization. These algorithms essentially
act as data dimensionality reduction techniques that reduce the dimension of the simulation data from several
million entities (number of nodes times number of flow variables) to a concise, more tractable description of
the flow phenomena of interest.

The vortical flows associated with realistic configurations may be very complex. Furthermore, due to
practical limitations related to memory availability and computational cost, the flow may not be optimally
resolved, either spatially or temporally. Many existing vortex detection techniques are ill-suited to deal with
data that does not have well-resolved features. For instance, noise in the data may contaminate gradient
computations that are essential components of many vortex detection and characterization algorithms. Vi-
sualization researchers employ the term uncertainty to describe the various forms of errors that can occur in
data of this type. However, since uncertainty is employed differently in the CFD literature,6 we will defer to
this nomenclature and use the term error to describe the phenomena that arise due to the discrete approxi-
mation. To be useful to application engineers, vortex characterization techniques must be sufficiently robust
to handle existing simulation data with such shortcomings. Therefore, it is imperative to develop feature de-
tection and characterization techniques that are robust even when presented with complex, coarsely-resolved
data.

In this paper, we describe enhancements to our vortex characterization algorithm5 that improve results for
realistic engineering simulation data. We focus on enhancements to a k-means clustering7,8 based topology
identification algorithm. We first describe our characterization algorithm and note some of its shortcomings.
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We then discuss the enhancements to the topology identification algorithm. Results for three data sets9–11

are included to highlight the strengths and weaknesses of our approach.

II. Related Work

Comprehensive overviews of existing vortex detection algorithms are given by Jiang et al.12 and Roth13

including useful taxonomies to help guide the selection of algorithms appropriate for various situations. One
categorization is based upon the representation of the vortex. A line-type algorithm extracts a vortex core
line while a region-type algorithm extracts a region in which a vortex is located. Unfortunately, many existing
techniques produce unsatisfactory results when applied to large-scale data sets with complex physics.

Banks and Singer14 developed a line-type algorithm that employs a predictor/corrector sequence. Their
approach is based on two assumptions: (1) a vortex core is a vorticity line and (2) the pressure in the core
in a local minimum. Sujudi and Haimes15 described a line-type method that extracts the vortex core by
locating points that satisfy two conditions: (1) the velocity gradient tensor has a complex eigenvalue pair
and (2) the reduced velocity, e.g., the velocity in the plane perpendicular to the real eigenvector, is zero.
Roth and Peikert16,17 proposed a different approach for detecting core lines that detects parallel alignment
between the velocity vector and the jerk vector, which is the vector time derivative of the acceleration.
Other topology-based techniques for visualizing vortices in large-scale simulations have been reported in the
literature.1–3 These extract vortex skeletons and define them in terms of feature-based descriptors.

Levy et al.18 developed a region-type method that assumes that a vortex core is located in a region where
the normalized helicity approaches ±1. Berdahl and Thompson19 use the fact that two of the eigenvalues
of the velocity gradient tensor are a complex conjugate pair in regions of swirling flow to define a scalar
swirl field using the magnitude of the imaginary part of the conjugate pair and the reduced velocity. Jeong
and Hussain20 define a vortex using the symmetric deformation tensor S and the antisymmetric spin tensor
Ω. Their criterion is that a point is located in a vortex if λ2, the second largest eigenvalue of S2 + Ω2, is
negative at that point. Jiang et al.21 employed a combinatorial labeling scheme based on Sperner’s Lemma
applied to the velocity vector field. An objective definition of a vortex has been proposed by Haller22 for
unsteady, three-dimensional incompressible flows. Haller defines a vortex as a set of fluid trajectories along
which the the Cotter-Rivlin derivative of the rate of strain is indefinite over directions of zero strain, which
Haller terms the MZ criterion. This approach has the advantage that it is Galilean invariant.

Both types of methods have shortcomings, however. Bauer and Peikert23 proposed a preprocessing step
for the parallel vectors operator13 to reduce artifacts occurring due to numerical approximation of higher
order derivatives. Jiang et al.24 proposed a postprocessing step for automatically verifying the results from
the detection algorithm. The work presented by Stegmaier et al.25 attempted to address robustness issues
associated with schemes of this type by combining the method of Jeong and Hussain20 with that of Banks
and Singer.14 Rütten26 addresses these issues by using a combination of the various methods to narrow the
selection of candidate cells. Then the parallel vectors operator is employed to determine a seed point and
streamline integration is used to represent the vortex axis.

Several approaches for computing the physical extent of a vortex, which is an ambiguous quantity, have
been proposed in the literature. Banks and Singer14 presented an approach that samples pressure and
vorticity along radial lines emanating from the detected core line, until user defined thresholds are exceeded.
Roth13 proposed a similar approach using a fraction of the value at the core position for each cross section as
the threshold. Recently, Garth et al.27 proposed an improvement to the above approach by approximating
the physical extent that eliminates user-defined thresholds by using the local maximum as the termination
criterion.

III. Characterization of Vortical Flows

In this section, we provide a brief description of our vortex characterization algorithm. For a detailed
explanation, we refer the reader to our previous work.4,5 We employ the serrated wing data set10 to illustrate
the steps in the process.
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A. Core Line Extraction

The primary component of the characterization algorithm is extraction of the vortex core line. Our technique
employs a predictor-corrector algorithm to extract the location of a vortex core line from a scalar field in
which a line-type extrema coincides with the vortex core line. Here, we employ the swirl parameter of
Berdahl and Thompson.19 Candidate cells are selected based on whether or not the eigenvalues of the
velocity gradient tensor contain a complex conjugate pair,28 and then whether or not the cell lies on a
local line-type maximum of the swirl parameter field. Contiguous collections of the candidate cells are then
aggregated to form regions that may contain a vortex core. Next, a k-means7,8-based algorithm is employed
to identify the aggregate topologies and segment them appropriately. Subcell resolution of the vortex core
line position is achieved by assuming a conical variation of the scalar field in the region near the core line.

1. Identify Candidate Cells and Aggregate

The local extrema method (LEM)4,5 exploits the fact that, for certain scalar fields, a vortex core line
coincides with a line-type extremum in the field variable. Therefore, a vortex core line can be extracted from
an appropriate scalar field f by locating local extrema in a series of properly oriented planes and connecting
the location of the extreme values with line segments to form a curve. A five-point stencil is employed to
determine if the node under consideration is a locally extreme value. The central point of the stencil lies in
the cell currently under consideration, while the other four points lie outside the cell along perpendicular
rays in a planar local neighborhood. In this case, we employed the eigenvector corresponding to the real
eigenvector to define the normal to the plane. When the value of f is largest at the central point, the current
cell lies on a local maximum curve. The cells containing local extrema are marked by the LEM as candidate
cells. Since we want to work at the feature level rather than the cell level, we group contiguous candidate
cells into aggregates. Small aggregates can be eliminated by unmarking aggregates that contain less than a
certain number of cells. The result for this step is shown in Figure 1.

Figure 1. Contiguous candidate cells are aggregated. Aggregates with less than a specified minimum number
of cells are removed.

Occasionally, an aggregate produced may contain holes in its interior. One approach is to employ hole
filling. Hole filling marks cells as candidate cells if they are surrounded by a specified number of neighboring
cells that are candidates. A second option is directional growth, which grows candidate cell regions along
the core line direction, as approximated by the swirl vector.

2. Identify Aggregate Topology and Segment

One of the problems with existing vortex detection algorithms is that they have difficulty distinguishing
vortices that are merging. The LEM may also mark cells in a manner that causes distinct vortices in
close proximity to one another to appear to be merging. We would like to be able to distinguish the
individual vortices that are merging from the resulting merged vortex. The serrated wing data set exhibits
this phenomenon, which is shown in Figure 1. There are two distinct vortices created by the first and second
serrations, as numbered from the left. They begin to merge slightly to the right of the third serration,
forming a Y-shaped aggregate, which is colored purple. This topology presents challenges for the core line
extraction algorithm because only one vortex core line is found per aggregate. The branching aggregates
need to be subdivided into component non-branching aggregates before core line extraction can be applied.
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In order to correctly identify the vortex topology, we developed a clustering algorithm to identify if and
where two vortices merge – in other words, where the branching of the aggregate occurs. This clustering
algorithm is a variation of the k-means clustering algorithm,7,8 designed specifically for unstructured meshes.
The idea is to decompose the entire aggregate into small segments (clusters) and determine if branching
occurs. To create the initial set of clusters, we apply the standard region-growing algorithm for unstructured
meshes, but we only grow each cluster to a fixed neighborhood size. Each neighborhood iteration consists
of adding the connected neighbors that are within the aggregate to the cluster. For the serrated wing data
set, we used a neighborhood size of four.

Once the entire aggregate is decomposed, we winnow out the tiny clusters by redistributing the cells
within the tiny clusters to the closest connected cluster. For the serrated wing data set, we used a minimum
cluster size of 16. Next, we compute the centroids of all the remaining clusters. At this point, we apply the
standard k-means clustering algorithm,7,8 with the only difference being that we do not use any prescribed
value for k. The algorithm terminates once the same sets of cells have been identified to be the centroids.
Figure 2 shows the individual clusters resulting from our algorithm for the merging vortices.

Figure 2. Zoomed in view of the merging vortices. The top image shows the clusters from the modified
k-means algorithm. The bottom image shows the merged clusters.

After the clusters have been computed, we proceed to identify branching clusters. In this case, a simple

cluster should have at most two neighboring clusters and only one if it is at a terminus. A non-simple, or
branching, cluster will have more than two neighboring clusters. We identify branching clusters and merge
the clusters in the branching regions separately. Figure 3 shows the result from the clustering and merging
step of our algorithm. Notice that we have correctly distinguished the merging vortices from the merged
vortex.

Figure 3. Aggregates after clustering. Notice that the single purple aggregate shown in Figure 1 has been
divided into three constituent aggregates.
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3. Extract Vortex Core Line

We start by defining a seed point for the core line extraction in each aggregate. We locate the point on the
aggregate’s bisecting plane with the largest swirl value and use this as the seed point. We then correct the
position of this point using function fitting applied to the scalar field in the swirl plane. Our objective is to
find the location of the extreme value in the local swirl plane. It is highly unlikely that the extreme value falls
exactly on a cell center. Thus, this extreme value cannot be found with linear interpolation of the values at
the cell centers. If we use a higher-order polynomial interpolation, unrealistic oscillations may occur. What
we do know about the field is that it attains a local maximum (or minimum) at the vortex core line in the
swirl plane perpendicular to the vortex core line. Therefore, in the local neighborhood of the vortex core
line, we can search for the location of the local maximum (or minimum) by fitting a conical function to the
data in the swirl plane. We chose a conical function because, like the field in the local neighborhood of the
core line, it has a single extreme value.

Function fitting consists of several steps. First, we select the fitting data. The data points are the center
of the cell in which the core line currently resides, as well as the centers of the neighboring cells (face, edge
and node neighbors). Next, we take the cell centers and project their locations onto the swirl plane. We can
justify using the values at the cell centers as follows. In the local neighborhood near a vortex core line, the
isosurfaces of the scalar field appear as tubes around the vortex core. Thus, the original cell center and its
projection onto the swirl plane lie on the same ”isotube” and have the same value of the scalar field.

Now that we have two-dimensional data in the swirl plane, we can fit a conical function to it. Fitting
involves moving the center of the cone, the location of the function’s extreme value, to different positions in
the local neighborhood, computing the standard deviation of the fitting error, and selecting the location with
the smallest standard deviation of the fitting error. Our local neighborhood is the size of a two-dimensional
bounding box that contains all the projected data points in the swirl plane.

Given a current point on the core line, we wish to find the next point along the core line. We predict
where the next point will lie using the swirl vector, which is an approximate tangent to the vortex core line.
A ray is shot from the current point in the direction of the swirl vector. The intersection of the ray with a
cell face is found and is taken to be a predicted point on the curve. The correction algorithm is applied and
the process is repeated. The core line extraction algorithm terminates when it hits an aggregate other than
the one in which it started, when it hits a domain boundary, or when it has traversed more than a certain
number of contiguous unmarked cells. Core line ends that lie in unmarked cells are removed. The result of
this step is shown in Figure 4.

Figure 4. Vortex core lines are extracted, one line per aggregate. Core lines have been colored by the aggregate
ID of the aggregate they were extracted from (Figure 3)

B. Extent Surface Computation

Once the core line is extracted, other vortex characteristics can be computed. One characteristic of interest
is the extent of the vortex. Unfortunately, the extent of a vortex is an ambiguous concept. We employ
the procedure outlined by Garth et al.27 who compute an extent curve in the plane containing the swirling
motion by determining a set of radial positions at which the tangential velocity is a maximum. A surface is
developed by lofting between each of the two-dimensional extent curves as shown in Figure 5.
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Figure 5. Vortex characteristic visualization: Vortex extent shaded by maximum tangential velocity.

C. Shortcomings of Existing Method

We now briefly describe some of the shortcomings of the existing method.

• Missed vortices: In some cases, the topology identification and segmentation algorithm fails. Generally
this occurs because the topology of the aggregate has been incorrectly identified.

• Discontinuous core lines: In some cases, the core lines that are extracted are not C0 continuous. A
core line extracted in its entirety but in several pieces has breaks. A core line with segments missing
has gaps. Gaps occur when core line extraction terminates prematurely and indicate a need for greater
robustness of the core line extraction algorithm.

• Nonsmooth core lines: In many instances, the core lines that are extracted, while C0 continuous, are
not smooth, i.e., not C1 continuous. This may be due to a number of factors. Among them are the
discrete nature of the data and the increased error due to computation of derived fields necessary for
core line extraction.

• Nonsmooth extent surfaces: The extent surface extraction technique is based on the premise that there
is a well-defined maximum tangential velocity along each radial line emanating from the vortex core
in the plane containing the swirling motion. The locus of these points forms a closed curve that the
describes the extent of the vortex. Essentially, this is a template that is employed to define the extent
of the vortex. In some cases, such as two vortices in close proximity to one another or when a vortex
is interacting with other flow features, this template is not appropriate.

IV. Enhanced Topology-Based Identification and Segmentation

In this section, we present enhancements to the aggregate topology identification and segmentation
algorithm. To illustrate some of the issues associated with complex vortex topologies, we again consider the
flow over the serrated wing10 shown in Figure 1. This flow contains multiple merging vortices. While the
individual vortices in these flows may be readily apparent to the human observer, they are not to a machine.
Thus, there is a need for an algorithm that identifies individual vortices in complex flows.

A. Aggregate Topology Identification and Segmentation

We have briefly presented a method for identifying individual vortices in complex flows based on vortex
topology5 in Section III. We now focus on the topology identification and segmentation component of this
algorithm.

In the aggregate topology identification step, illustrated in Figure 6, we look for branch points where
two aggregate branches merge. At a branch point, we expect to see a cluster with three neighbors. At
the ends of the branches, we expect to see clusters with one neighbor. Between the terminal points and
branch points, we expect to see clusters with two neighbors. The baseline method could identify individual,
line shaped aggregates and aggregates with two merging branches, but could not handle aggregates with
diverging branches nor multiple merging branches.
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Figure 6. Aggregate of candidate cells colored by cluster neighbor count: blue – one neighbor (branch termina-
tion), green – two neighbors (part of an individual branch), and orange – three neighbors (branch point/point
where two branches merge)

In order to extract individual vortices from complex vortical flows, we first need to classify the aggregates
according to their topology. Our topology classification system is shown in Figure 7. The simplest case is the
isolated non-branching linear aggregate (see Figure 7(a)). Loops are another example of a non-branching but
topologically distinct aggregate (see Figure 7(b)). The other cases contain multiple branches and / or loops.
The simplest of the multi-branch cases are shown in Figures 7(c) and 7(e). Two branches may originate near
each other, then diverge (see Figure 7(c)). Two branches may merge (see Figure 7(e)). Initially diverging
branches may re-merge (Figure 7(d)). Multiple branches can merge (see Figures 7(f) and 7(g)). While all
aggregates may not fit neatly into any of these cases (see Figure 7(h)), they may be broken up into pieces
that do.

B. Implementation Challenges

Our vortex topology identification method presents us with two main implementation challenges. The first
is creation of candidate cells clusters with the following properties:

• Cluster boundaries are perpendicular to the vortex core line

• Clusters at vortex origin and ending points have one neighbor

• Clusters at branch points have three or more neighbors

• Clusters between origin, ending, and branch points have two neighbors

These requirements must be met in order to apply our vortex topology algorithm which is based on cluster
neighbor counts. We have found that the standard k-means clustering algorithm does not always produce
candidate cell clusters that meet these requirements. We have made three improvements to the clustering
algorithm.

• The baseline k-means algorithm is based on distance between cells and thus produces clusters whose
boundaries may not be perpendicular to the vortex core line. For this reason, we use the distance
between cells projected onto the vortex core line rather than regular Cartesian distance. This results
in cylindrical shaped clusters whose cluster-cluster boundaries are perpendicular to the core line. Since
the vortex core line has not yet been extracted when this is being done, we approximate it by using
the swirl vector at the current cluster center.

• In our previous work, the k-means clustering algorithm used a fixed minimum cluster size. This size
was chosen to work well with the data set we were currently working on. However, in other data sets,
it produces too many small clusters. When clusters are too many and too small, their neighbor count
goes up and their boundaries may not be perpendicular to the core line. We now use a minimum
cluster size related to aggregate size (the number of cells in the aggregate divided by 20).

• Our previous clustering algorithm would consider clusters to be neighbors if they had even one pair of
neighboring cells. We now use a more stringent neighbor definition: neighbors must have a sufficient

number of neighboring cells.
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(a) linear non-branching aggregate (e) aggregate with merging branches

(b) loop non-branching aggregate (f) aggregate with multiple merging branches

(c) aggregate with diverging branches (g) aggregate with multiple merging branches (single branch point)

(d) aggregate with diverging/remerging branches (h) complex topology aggregate

Figure 7. Aggregate topology classification system
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• The aforementioned hole filling directional growth enhancements to the cell marking and aggregation
stage improved the quality of the input to the clustering algorithm. The clustering algorithm has
difficulty when many holes are present in the marked cell region. Since hole filling and directional
growth greatly reduce the number of holes, the clustering algorithm’s output quality improves.

The second implementation challenge is correct subdivision of all the aggregate topology cases shown
in Figure 7, such as diverging branches aggregate and multiple merging branches aggregate. The goal of
topology based subdivision is to end up with non-branching subaggregates (straight or loop). In order to do
this, we propose the following improvements to our method:

• Handle multiple merging branches

– Handle multiple branch points rather than stopping after the first

– Handle branch points joining three or more branches rather than just three

• Handle the two diverging branches case (Figure 7(c))

• Handle loops

• Differentiate between loops and diverging / remerging

The multiple branching cases require two changes. First, the aggregate is subdivided into all branch
points, not just the first one found. Secondly, the definition of branch point is expanded from a three
neighbor cluster to three or more neighbor cluster, allowing for more than two merging branches. This
process is illustrated in Figure 8. First, branch points are identified. They aggregate is then split at the
branch points by allocating their cells to neighboring clusters and adjusting the cluster neighbor count. The
result should be non-branching subaggregates composed of two terminal points at either end of a chain of two
neighbor segments. Neighboring clusters are then reaggregated into non-branching aggregates from which
core lines can be extracted.

C. Future Modifications

Loop aggregates can be identified by their lack of branch points and terminal points. They are composed
of segments with two neighbors each. This is a special case where there is no branch point and no terminal
points.

Diverging branches likely indicate two counter-rotating vortices that originate near each other. We
cannot use the neighbor count definition of a branch point in this case. Thus, we must expand or change
the definition of branch point. Counter-rotating vortices have opposite signs of normalized helicity at their
cores. Thus, we can consider the normalized helicity of the clusters and pick the one where helicity changes
sign as the branch point, as shown in Figure 9. We choose not to use the geometric position of the clusters
relative to each to select the branch point because a single hairpin vortex could give rise to an aggregate
with a “diverging branch” shape, but it should not be subdivided. A hairpin vortex would have the same
sign of normalized helicity in all the clusters of its aggregate. This definition of branch point could also be
used in the diverging / remerging case.

V. Results

In this section, we will demonstrate the effectiveness of our algorithm by applying it to three different
simulation data sets. We first discuss the inherent difficulties of quantifying improvement on the characteri-
zations and present our strategy and the rationale for using it.

A. Quantification of Improvements

Quantifying improvement in vortex characterizations is a difficult proposition. It is difficult to develop an
objective measure of quality for these algorithms – what exactly constitutes “better” is sometimes subjective.
The characteristics of vortices in the simulation data are not usually known á priori except in the case of
synthetic data. This makes it difficult to assess the error in the characterization. Additionally, due to error
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(a) A multi branch aggregate requires subidivision into non-branching

aggregates before core lines can be extracted.

(b) The aggregate is split into clusters with one (blue), two (green),

three (orange) or more (red) neighbors. Branch points are identified

as clusters with three or more neighbors.

(c) Branch point clusters are split among their neighbors

and neighbor count is adjusted accordingly.

(d) One and two neighbor clusters are left.

They are merged into non-branching aggregates.

Vortex core line extraction can now proceed.

Figure 8. A multi-branch aggregate is split at multiple branch points. The neighbor count is adjusted. Only
non-branching subaggregates remain.

Figure 9. Diverging branch aggregates do not have a branch point with three or more neighbors, but may
have a branch point where normalized helicity changes sign.
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from multiple sources in the simulation itself, comparison of derived vortex characteristics with experimental
data may also be problematic.

In some cases, visual assessment is a possible strategy. However, this technique is usually only effective
in situations in which the vortex characterization algorithm fails to properly define an entity as a vortex. In
our algorithm, this happens most frequently when the topology identification component fails to properly
segment candidate cell aggregates and no core line is extracted from a portion of an aggregate. This error
cascades since it is necessary to compute a core line before the extent can be computed. This may produce
gaps or may miss some vortices completely. Additionally, a vortex is sometimes not extracted as a single
entity. That is, it may be extracted in several segments. Therefore, using a simple count of the vortices
present as a quality metric may not be effective strategy. In these cases, maximizing the vortex length is
probably the most effective metric. However, this metric is not without problems because it rewards the
detection of false positives. In the sections that follow, we will use visual inspection to quantify the quality
of our vortex characterizations since our primary objective is to eliminate missed vortices.

B. Isolated Wing

We first consider the wing flow field simulation described by Luke et al.,9 which is dominated by a wing tip
vortex (Figure 10 top). Upon closer inspection, two merging vortices can be noted (Figure 10 bottom). The
cell marking and topology identification algorithms struggle in the region where the two vortices come in
close proximity to one another. This is partly due to the coarseness of the mesh there, and also due to the
multiple clusters with three or more neighbors there. The branch points produce core lines in little pieces.
However, the topology identification method does pick up both of the merging vortices, and has little trouble
with the large wingtip vortex. There is likely an interaction between the primary vortex and the secondary
vortices that is not captured in the relatively coarse mesh downstream of the wing.

Figure 10. Isolated wing: wingtip vortex correctly identified as a single, complete, straight vortex (top). The
two vortices that merge near the wing tip were also detected, although the method had difficulty in the merge
region itself (bottom).

C. Serrated Wing

The serrated wing, described by Hammons and Thompson,10 gives rise to merging vortices, as well as vortices
that originate in close proximity to one another. In the past we have had difficulty robustly detecting the four
largest vortices. We have also had difficulty with the flow features near the nose due to their multi-branching
nature. The problems were traced to aggregates with multiple branches and branch points with more than
three branches. With the improvements to algorithm, we are now able to detect the four large vortices much
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more robustly with less need for parameter tweaking (see Figure 11). We are also able to extract the vortex
core line near the nose, seen in Figure 13. The nose vortex, which originates at the apex and terminates near
the tip of the first serration, is still not complete. However, this is an improvement over parts of it being
missing.

Figure 11. Improved performance of the clustering algorithm, part of vortex topology identification.

Figure 12. Complete vortex core lines extracted for four large vortices. Nose vortex extracted in pieces, but
without missing pieces.

Figure 13. Closeup of the nose of the serrated wing. The vortex originating at the nose tip and ending at the
serration tip has been extracted, although it is in two pieces.

D. CAWAPI

The F-16XL wing data, generated by Görtz and A. Jirásek,11 has proven quite challenging. It contains many
vortices that originate near each other. It also have vortices whose core lines are in close proximity to each
other. This challenges both the cell marking and clustering algorithms. Note that while in parts of the data,
cluster quality is high and neighbor counts are as we would expect, in other parts (colored red), the topology
identification algorithm struggles (Figures 14 and 15). This results in vortex cores lines that are in little
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pieces or have gaps (see Figure 16). Note that in the regions that were green in Figure 15, indicating that
clustering worked correctly, we have long, continuous core lines.

Figure 14. CAWAPI topology identification clusters. High quality clusters are perpendicular to vortex core
lines, and have two neighbors unless they are at the end of a vortex or at a branch point.

VI. Conclusions and Future Directions

The vortex topology identification technique still needs significant work, but shows promise. The im-
provements we have made to candidate cell marking (directional growth) and clustering (distance along
vortex core line, larger clusters, correct neighbor counts) have improved the topology identification perfor-
mance. The enhancement we’ve made to the topology algorithm itself, such as handling multiple branch
points, have also improved our results in measurable ways. We now see more complete vortices, less vortices
in pieces, less missing pieces, less gaps.

Even if the topology-challenges described in this paper were completely surmounted, we would still be
faced with the pipeline challenge. Our vortex detection and characterization method is a pipeline composed
of several stages. The input to the current stage is the output of the preceding stage. The vortex topology
stage is preceded by the candidate cell marking and aggregation stages. Therefore, if those stages produce
cells that are difficult to cluster, there is little the clustering and topology identification stages can do to
produce high quality results.

One way to address this problem is to change the parameters that control candidate cell marking and
aggregation. However, finding just the right set of parameters that give ideal candidate cell aggregates is
tedious and is contrary to the objective of this effort: automatic characterization of the data. Sometimes,
adequate cell marking is not possible due to the quality of the CFD data itself or simply the nature of the
cell marking algorithm. We have made improvements to the cell marking and aggregation stages. Chief
among them were hole filling and directional growth. The k-means clustering method performs better on
cell aggregates without holes, or with very low porosity. Hole filling and directional aggregate growth both
reduce porosity. The latter does so while preserving aggregate topology. Even with these changes, the
clustering algorithm can still have difficulty. Another approach is to rethink the cell marking algorithm, for
example, try a combination of scalar fields rather than just the swirl parameter.

Topology identification challenges still remain. We are currently unable to correctly subdivide diverging
aggregates, diverging / remerging aggregates, and to recognize loops. Loop recognition is just an implemen-
tation matter, the others are a bit more difficult. We would like to expand the definition of ”branch point”
to include clusters where the sign of the normalized helicity changes. This would help us identify individual
vortices in a counter-rotating pair.
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Figure 15. CAWAPI clusters colored by neighbor count. Note the large red area. This area does not get
aggregated properly and produces core lines in pieces or with gaps.

Figure 16. In the region where clustering and topology identification had difficulty, we see lots of little pieces
of core lines, or missing lines. However, note that in the regions that were green in Figure 15, we see complete
core lines (the long green, blue, magenta lines).
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